Model
This algorithm applies to both univariable linear regression model:h(x) = z0 + z1*x1
and multivariable linear regression model:
h(x) = z0 + z1*x1 + z2*x2 + ... + zn*xn
Aka:
h(x) = z' * x
z = (z0, z1, ..., zn)'
x = (x0, x1, ..., xn)', x0 = 1
Algorithm
The Gradient Descent algorithm is a vectorized implementation in Octave as below:function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
%theta = theta - alpha/m * Sum{[h(x)-y] * x}
h = X*theta; %predictions h(x)
gradients = 1/m * X' * (h-y) ; %gradient vector
theta = theta - alpha * gradients;
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
No comments:
Post a Comment