Softmax回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签
可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护。http://yann.lecun.com/exdb/mnist/ )
回想一下在 logistic 回归中,我们的训练集由
我们将训练模型参数
在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标
对于给定的测试输入
其中
为了方便起见,我们同样使用符号
代价函数
现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中,
是示性函数,其取值规则为:
值为真的表达式
![]()
,
值为假的表达式
。举例来说,表达式
的值为1 ,
的值为 0。我们的代价函数为:
值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:
可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的
.
对于
让我们来回顾一下符号 "
Reference http://zjjconan.github.io/articles/2015/04/Softmax-Regression-Matlab for how to infer
有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。
Softmax回归模型参数化的特点
Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量
中减去了向量
,这时,每一个
都变成了
(
)。此时假设函数变成了以下的式子:
换句话说,从
进一步而言,如果参数
注意,当
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数
权重衰减
我们通过添加一个权重衰减项
来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (
为了使用优化算法,我们需要求得这个新函数
通过最小化
Softmax回归与Logistic 回归的关系
当类别数
时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当
时,softmax 回归的假设函数为:
利用softmax回归参数冗余的特点,我们令
因此,用
Softmax 回归 vs. k 个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
Practical issues: Numeric stability. When you’re writing code for computing the Softmax function in practice, the intermediate terms and may be very large due to the exponentials. Dividing large numbers can be numerically unstable, so it is important to use a normalization trick. Notice that if we multiply the top and bottom of the fraction by a constant and push it into the sum, we get the following (mathematically equivalent) expression:
We are free to choose the value of . This will not change any of the results, but we can use this value to improve the numerical stability of the computation. A common choice for is to set . This simply states that we should shift the values inside the vector so that the highest value is zero. In code:
f = np.array([123, 456, 789]) # example with 3 classes and each having large scores
p = np.exp(f) / np.sum(np.exp(f)) # Bad: Numeric problem, potential blowup
# instead: first shift the values of f so that the highest number is 0:
f -= np.max(f) # f becomes [-666, -333, 0]
p = np.exp(f) / np.sum(np.exp(f)) # safe to do, gives the correct answer